Toggle Navigation
Hatchery
Eggs
uQR
uQR.py
Users
Badges
Login
Register
uQR.py
raw
Content
import ure as re """ Exceptions Formerly in exceptions.py """ class DataOverflowError(Exception): pass """ Constants Formerly in constants.py """ # QR error correct levels ERROR_CORRECT_L = 1 ERROR_CORRECT_M = 0 ERROR_CORRECT_Q = 3 ERROR_CORRECT_H = 2 """ LUT Formerly in LUT.py """ # Store all kinds of lookup table. # # generate rsPoly lookup table. # from qrcode import base # def create_bytes(rs_blocks): # for r in range(len(rs_blocks)): # dcCount = rs_blocks[r].data_count # ecCount = rs_blocks[r].total_count - dcCount # rsPoly = base.Polynomial([1], 0) # for i in range(ecCount): # rsPoly = rsPoly * base.Polynomial([1, base.gexp(i)], 0) # return ecCount, rsPoly # rsPoly_LUT = {} # for version in range(1,41): # for error_correction in range(4): # rs_blocks_list = base.rs_blocks(version, error_correction) # ecCount, rsPoly = create_bytes(rs_blocks_list) # rsPoly_LUT[ecCount]=rsPoly.num # print(rsPoly_LUT) # Result. Usage: input: ecCount, output: Polynomial.num # e.g. rsPoly = base.Polynomial(LUT.rsPoly_LUT[ecCount], 0) rsPoly_LUT = { 7: b'\x01\x7fz\x9a\xa4\x0bDu', 10: b'\x01\xd8\xc2\x9fo\xc7^_q\x9d\xc1', 13: b'\x01\x89I\xe3\x11\xb1\x114\r.+S\x84x', 15: b'\x01\x1d\xc4o\xa3pJ\nii\x8b\x84\x97 \x86\x1a', 16: b'\x01;\rh\xbdD\xd1\x1e\x08\xa3A)\xe5b2$;', 17: b'\x01wBSxw\x16\xc5S\xf9)\x8f\x86U5}cO', 18: b'\x01\xef\xfb\xb7q\x95\xaf\xc7\xd7\xf0\xdcIR\xadK C\xd9\x92', 20: b'\x01\x98\xb9\xf0\x05oc\x06\xdcp\x96E$\xbb\x16\xe4\xc6yy\xa5\xae', 22: b'\x01Y\xb3\x83\xb0\xb6\xf4\x13\xbdE(\x1c\x89\x1d{C\xfdV\xda\xe6\x1a\x91\xf5', 24: b'\x01zv\xa9F\xb2\xed\xd8fs\x96\xe5I\x82H=+\xce\x01\xed\xf7\x7f\xd9\x90u', 26: b'\x01\xf63\xb7\x04\x88b\xc7\x98M8\xce\x18\x91(\xd1u\xe9*\x87DF\x90\x92M+^', 28: b'\x01\xfc\t\x1c\r\x12\xfb\xd0\x96g\xaed)\xa7\x0c\xf78uw\xe9\x7f\xb5dy\x93\xb0J:\xc5', 30: b'\x01\xd4\xf6MI\xc3\xc0Kb\x05Fg\xb1\x16\xd9\x8a3\xb5\xf6H\x19\x12.\xe4J\xd8\xc3\x0bj\x82\x96', } """ Base Formerly in base.py """ EXP_TABLE = list(range(256)) LOG_TABLE = list(range(256)) for i in range(8): EXP_TABLE[i] = 1 << i for i in range(8, 256): EXP_TABLE[i] = ( EXP_TABLE[i - 4] ^ EXP_TABLE[i - 5] ^ EXP_TABLE[i - 6] ^ EXP_TABLE[i - 8]) for i in range(255): LOG_TABLE[EXP_TABLE[i]] = i RS_BLOCK_OFFSET = { ERROR_CORRECT_L: 0, ERROR_CORRECT_M: 1, ERROR_CORRECT_Q: 2, ERROR_CORRECT_H: 3, } RS_BLOCK_TABLE = [ b'\x01\x1a\x13', b'\x01\x1a\x10', b'\x01\x1a\r', b'\x01\x1a\t', b'\x01,"', b'\x01,\x1c', b'\x01,\x16', b'\x01,\x10', b'\x01F7', b'\x01F,', b'\x02#\x11', b'\x02#\r', b'\x01dP', b'\x022 ', b'\x022\x18', b'\x04\x19\t', b'\x01\x86l', b'\x02C+', b'\x02!\x0f\x02"\x10', b'\x02!\x0b\x02"\x0c', b'\x02VD', b'\x04+\x1b', b'\x04+\x13', b'\x04+\x0f', b'\x02bN', b'\x041\x1f', b'\x02 \x0e\x04!\x0f', b"\x04'\r\x01(\x0e", b'\x02ya', b"\x02<&\x02='", b'\x04(\x12\x02)\x13', b'\x04(\x0e\x02)\x0f', b'\x02\x92t', b'\x03:$\x02;%', b'\x04$\x10\x04%\x11', b'\x04$\x0c\x04%\r', b'\x02VD\x02WE', b'\x04E+\x01F,', b'\x06+\x13\x02,\x14', b'\x06+\x0f\x02,\x10', b'\x04eQ', b'\x01P2\x04Q3', b'\x042\x16\x043\x17', b'\x03$\x0c\x08%\r', b'\x02t\\\x02u]', b'\x06:$\x02;%', b'\x04.\x14\x06/\x15', b'\x07*\x0e\x04+\x0f', b'\x04\x85k', b'\x08;%\x01<&', b'\x08,\x14\x04-\x15', b'\x0c!\x0b\x04"\x0c', b'\x03\x91s\x01\x92t', b'\x04@(\x05A)', b'\x0b$\x10\x05%\x11', b'\x0b$\x0c\x05%\r', b'\x05mW\x01nX', b'\x05A)\x05B*', b'\x056\x18\x077\x19', b'\x0b$\x0c\x07%\r', b'\x05zb\x01{c', b'\x07I-\x03J.', b'\x0f+\x13\x02,\x14', b'\x03-\x0f\r.\x10', b'\x01\x87k\x05\x88l', b'\nJ.\x01K/', b'\x012\x16\x0f3\x17', b'\x02*\x0e\x11+\x0f', b'\x05\x96x\x01\x97y', b'\tE+\x04F,', b'\x112\x16\x013\x17', b'\x02*\x0e\x13+\x0f', b'\x03\x8dq\x04\x8er', b'\x03F,\x0bG-', b'\x11/\x15\x040\x16', b"\t'\r\x10(\x0e", b'\x03\x87k\x05\x88l', b'\x03C)\rD*', b'\x0f6\x18\x057\x19', b'\x0f+\x0f\n,\x10', b'\x04\x90t\x04\x91u', b'\x11D*', b'\x112\x16\x063\x17', b'\x13.\x10\x06/\x11', b'\x02\x8bo\x07\x8cp', b'\x11J.', b'\x076\x18\x107\x19', b'"%\r', b'\x04\x97y\x05\x98z', b'\x04K/\x0eL0', b'\x0b6\x18\x0e7\x19', b'\x10-\x0f\x0e.\x10', b'\x06\x93u\x04\x94v', b'\x06I-\x0eJ.', b'\x0b6\x18\x107\x19', b'\x1e.\x10\x02/\x11', b'\x08\x84j\x04\x85k', b'\x08K/\rL0', b'\x076\x18\x167\x19', b'\x16-\x0f\r.\x10', b'\n\x8er\x02\x8fs', b'\x13J.\x04K/', b'\x1c2\x16\x063\x17', b'!.\x10\x04/\x11', b'\x08\x98z\x04\x99{', b'\x16I-\x03J.', b'\x085\x17\x1a6\x18', b'\x0c-\x0f\x1c.\x10', b'\x03\x93u\n\x94v', b'\x03I-\x17J.', b'\x046\x18\x1f7\x19', b'\x0b-\x0f\x1f.\x10', b'\x07\x92t\x07\x93u', b'\x15I-\x07J.', b'\x015\x17%6\x18', b'\x13-\x0f\x1a.\x10', b'\x05\x91s\n\x92t', b'\x13K/\nL0', b'\x0f6\x18\x197\x19', b'\x17-\x0f\x19.\x10', b'\r\x91s\x03\x92t', b'\x02J.\x1dK/', b'*6\x18\x017\x19', b'\x17-\x0f\x1c.\x10', b'\x11\x91s', b'\nJ.\x17K/', b'\n6\x18#7\x19', b'\x13-\x0f#.\x10', b'\x11\x91s\x01\x92t', b'\x0eJ.\x15K/', b'\x1d6\x18\x137\x19', b'\x0b-\x0f..\x10', b'\r\x91s\x06\x92t', b'\x0eJ.\x17K/', b',6\x18\x077\x19', b';.\x10\x01/\x11', b'\x0c\x97y\x07\x98z', b'\x0cK/\x1aL0', b"'6\x18\x0e7\x19", b'\x16-\x0f).\x10', b'\x06\x97y\x0e\x98z', b'\x06K/"L0', b'.6\x18\n7\x19', b'\x02-\x0f@.\x10', b'\x11\x98z\x04\x99{', b'\x1dJ.\x0eK/', b'16\x18\n7\x19', b'\x18-\x0f..\x10', b'\x04\x98z\x12\x99{', b'\rJ. K/', b'06\x18\x0e7\x19', b'*-\x0f .\x10', b'\x14\x93u\x04\x94v', b'(K/\x07L0', b'+6\x18\x167\x19', b'\n-\x0fC.\x10', b'\x13\x94v\x06\x95w', b'\x12K/\x1fL0', b'"6\x18"7\x19', b'\x14-\x0f=.\x10', ] def glog(n): if n < 1: # pragma: no cover raise ValueError("glog(%s)" % n) return LOG_TABLE[n] def gexp(n): return EXP_TABLE[n % 255] class Polynomial: def __init__(self, num, shift): if not num: # pragma: no cover raise Exception("%s/%s" % (len(num), shift)) for offset in range(len(num)): if num[offset] != 0: break else: offset += 1 if isinstance(num[offset:], bytes): shift_chunk = b'\x00'*shift elif isinstance(num[offset:], list): shift_chunk = [0]*shift self.num = bytearray(num[offset:]+shift_chunk) def __getitem__(self, index): return self.num[index] def __iter__(self): return iter(self.num) def __len__(self): return len(self.num) def __mul__(self, other): num = [0] * (len(self) + len(other) - 1) for i, item in enumerate(self): for j, other_item in enumerate(other): num[i + j] ^= gexp(glog(item) + glog(other_item)) return Polynomial(num, 0) """ EDIT """ def __mod__(self, other): this = self while True: difference = len(this) - len(other) if difference < 0: break ratio = glog(this[0]) - glog(other[0]) num = [ item ^ gexp(glog(other_item) + ratio) for item, other_item in zip(this, other)] if difference: num.extend(this[-difference:]) this = Polynomial(num, 0) return this class RSBlock: def __init__(self, total_count, data_count): self.total_count = total_count self.data_count = data_count def make_rs_blocks(version, error_correction): if error_correction not in RS_BLOCK_OFFSET: # pragma: no cover raise Exception( "bad rs block @ version: %s / error_correction: %s" % (version, error_correction)) offset = RS_BLOCK_OFFSET[error_correction] rs_block = RS_BLOCK_TABLE[(version - 1) * 4 + offset] blocks = [] for i in range(0, len(rs_block), 3): count, total_count, data_count = rs_block[i:i + 3] for j in range(count): blocks.append(RSBlock(total_count, data_count)) return blocks """ Utilities Formerly in utils.py """ # QR encoding modes. MODE_NUMBER = 1 << 0 MODE_ALPHA_NUM = 1 << 1 MODE_8BIT_BYTE = 1 << 2 MODE_KANJI = 1 << 3 # Encoding mode sizes. MODE_SIZE_SMALL = { MODE_NUMBER: 10, MODE_ALPHA_NUM: 9, MODE_8BIT_BYTE: 8, MODE_KANJI: 8, } MODE_SIZE_MEDIUM = { MODE_NUMBER: 12, MODE_ALPHA_NUM: 11, MODE_8BIT_BYTE: 16, MODE_KANJI: 10, } MODE_SIZE_LARGE = { MODE_NUMBER: 14, MODE_ALPHA_NUM: 13, MODE_8BIT_BYTE: 16, MODE_KANJI: 12, } ALPHA_NUM = b'0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:' RE_ALPHA_NUM = re.compile(b'^[' + ALPHA_NUM + b']*') # The number of bits for numeric delimited data lengths. NUMBER_LENGTH = {3: 10, 2: 7, 1: 4} PATTERN_POSITION_TABLE = [ b'', b'\x06\x12', b'\x06\x16', b'\x06\x1a', b'\x06\x1e', b'\x06"', b'\x06\x16&', b'\x06\x18*', b'\x06\x1a.', b'\x06\x1c2', b'\x06\x1e6', b'\x06 :', b'\x06">', b'\x06\x1a.B', b'\x06\x1a0F', b'\x06\x1a2J', b'\x06\x1e6N', b'\x06\x1e8R', b'\x06\x1e:V', b'\x06">Z', b'\x06\x1c2H^', b'\x06\x1a2Jb', b'\x06\x1e6Nf', b'\x06\x1c6Pj', b'\x06 :Tn', b'\x06\x1e:Vr', b'\x06">Zv', b'\x06\x1a2Jbz', b'\x06\x1e6Nf~', b'\x06\x1a4Nh\x82', b'\x06\x1e8Rl\x86', b'\x06"<Vp\x8a', b'\x06\x1e:Vr\x8e', b'\x06">Zv\x92', b'\x06\x1e6Nf~\x96', b'\x06\x182Lf\x80\x9a', b'\x06\x1c6Pj\x84\x9e', b'\x06 :Tn\x88\xa2', b'\x06\x1a6Rn\x8a\xa6', b'\x06\x1e:Vr\x8e\xaa', ] G15 = ( (1 << 10) | (1 << 8) | (1 << 5) | (1 << 4) | (1 << 2) | (1 << 1) | (1 << 0)) G18 = ( (1 << 12) | (1 << 11) | (1 << 10) | (1 << 9) | (1 << 8) | (1 << 5) | (1 << 2) | (1 << 0)) G15_MASK = (1 << 14) | (1 << 12) | (1 << 10) | (1 << 4) | (1 << 1) PAD0 = 0xEC PAD1 = 0x11 # Precompute bit count limits, indexed by error correction level and code size _data_count = lambda block: block.data_count BIT_LIMIT_TABLE = [ [0] + [8*sum(map(_data_count, make_rs_blocks(version, error_correction))) for version in range(1, 41)] for error_correction in range(4) ] def BCH_type_info(data): d = data << 10 while BCH_digit(d) - BCH_digit(G15) >= 0: d ^= (G15 << (BCH_digit(d) - BCH_digit(G15))) return ((data << 10) | d) ^ G15_MASK def BCH_type_number(data): d = data << 12 while BCH_digit(d) - BCH_digit(G18) >= 0: d ^= (G18 << (BCH_digit(d) - BCH_digit(G18))) return (data << 12) | d def BCH_digit(data): digit = 0 while data != 0: digit += 1 data >>= 1 return digit def pattern_position(version): return PATTERN_POSITION_TABLE[version - 1] def make_mask_func(pattern): """ Return the mask function for the given mask pattern. """ if pattern == 0: # 000 return lambda i, j: (i + j) % 2 == 0 if pattern == 1: # 001 return lambda i, j: i % 2 == 0 if pattern == 2: # 010 return lambda i, j: j % 3 == 0 if pattern == 3: # 011 return lambda i, j: (i + j) % 3 == 0 if pattern == 4: # 100 return lambda i, j: (int(i / 2) + int(j / 3)) % 2 == 0 if pattern == 5: # 101 return lambda i, j: (i * j) % 2 + (i * j) % 3 == 0 if pattern == 6: # 110 return lambda i, j: ((i * j) % 2 + (i * j) % 3) % 2 == 0 if pattern == 7: # 111 return lambda i, j: ((i * j) % 3 + (i + j) % 2) % 2 == 0 raise TypeError("Bad mask pattern: " + pattern) # pragma: no cover def mode_sizes_for_version(version): if version < 10: return MODE_SIZE_SMALL elif version < 27: return MODE_SIZE_MEDIUM else: return MODE_SIZE_LARGE def length_in_bits(mode, version): if mode not in ( MODE_NUMBER, MODE_ALPHA_NUM, MODE_8BIT_BYTE, MODE_KANJI): raise TypeError("Invalid mode (%s)" % mode) # pragma: no cover if version < 1 or version > 40: # pragma: no cover raise ValueError( "Invalid version (was %s, expected 1 to 40)" % version) return mode_sizes_for_version(version)[mode] def make_lost_point(modules): modules_count = len(modules) lost_point = 0 lost_point = _lost_point_level1(modules, modules_count) lost_point += _lost_point_level2(modules, modules_count) lost_point += _lost_point_level3(modules, modules_count) lost_point += _lost_point_level4(modules, modules_count) return lost_point def _lost_point_level1(modules, modules_count): lost_point = 0 modules_range = range(modules_count) container = [0] * (modules_count + 1) for row in modules_range: this_row = modules[row] previous_color = this_row[0] length = 0 for col in modules_range: if this_row[col] == previous_color: length += 1 else: if length >= 5: container[length] += 1 length = 1 previous_color = this_row[col] if length >= 5: container[length] += 1 for col in modules_range: previous_color = modules[0][col] length = 0 for row in modules_range: if modules[row][col] == previous_color: length += 1 else: if length >= 5: container[length] += 1 length = 1 previous_color = modules[row][col] if length >= 5: container[length] += 1 lost_point += sum(container[each_length] * (each_length - 2) for each_length in range(5, modules_count + 1)) return lost_point def _lost_point_level2(modules, modules_count): lost_point = 0 modules_range = range(modules_count - 1) for row in modules_range: this_row = modules[row] next_row = modules[row + 1] # use iter() and next() to skip next four-block. e.g. # d a f if top-right a != b botton-right, # c b e then both abcd and abef won't lost any point. modules_range_iter = iter(modules_range) for col in modules_range_iter: top_right = this_row[col + 1] if top_right != next_row[col + 1]: # reduce 33.3% of runtime via next(). # None: raise nothing if there is no next item. try: next(modules_range_iter) except StopIteration: pass elif top_right != this_row[col]: continue elif top_right != next_row[col]: continue else: lost_point += 3 return lost_point def _lost_point_level3(modules, modules_count): # 1 : 1 : 3 : 1 : 1 ratio (dark:light:dark:light:dark) pattern in # row/column, preceded or followed by light area 4 modules wide. From ISOIEC. # pattern1: 10111010000 # pattern2: 00001011101 modules_range = range(modules_count) modules_range_short = range(modules_count-10) lost_point = 0 for row in modules_range: this_row = modules[row] modules_range_short_iter = iter(modules_range_short) col = 0 for col in modules_range_short_iter: if ( not this_row[col + 1] and this_row[col + 4] and not this_row[col + 5] and this_row[col + 6] and not this_row[col + 9] and ( this_row[col + 0] and this_row[col + 2] and this_row[col + 3] and not this_row[col + 7] and not this_row[col + 8] and not this_row[col + 10] or not this_row[col + 0] and not this_row[col + 2] and not this_row[col + 3] and this_row[col + 7] and this_row[col + 8] and this_row[col + 10] ) ): lost_point += 40 # horspool algorithm. # if this_row[col + 10] == True, pattern1 shift 4, pattern2 shift 2. So min=2. # if this_row[col + 10] == False, pattern1 shift 1, pattern2 shift 1. So min=1. if this_row[col + 10]: try: next(modules_range_short_iter) except StopIteration: pass for col in modules_range: modules_range_short_iter = iter(modules_range_short) row = 0 for row in modules_range_short_iter: if ( not modules[row + 1][col] and modules[row + 4][col] and not modules[row + 5][col] and modules[row + 6][col] and not modules[row + 9][col] and ( modules[row + 0][col] and modules[row + 2][col] and modules[row + 3][col] and not modules[row + 7][col] and not modules[row + 8][col] and not modules[row + 10][col] or not modules[row + 0][col] and not modules[row + 2][col] and not modules[row + 3][col] and modules[row + 7][col] and modules[row + 8][col] and modules[row + 10][col] ) ): lost_point += 40 if modules[row + 10][col]: try: next(modules_range_short_iter) except StopIteration: pass return lost_point def _lost_point_level4(modules, modules_count): dark_count = sum(map(sum, modules)) percent = float(dark_count) / (modules_count**2) # Every 5% departure from 50%, rating++ rating = int(abs(percent * 100 - 50) / 5) return rating * 10 def optimal_data_chunks(data, minimum=4): """ An iterator returning QRData chunks optimized to the data content. :param minimum: The minimum number of bytes in a row to split as a chunk. """ data = to_bytestring(data) num_pattern = re.compile(b'\d?'*minimum) num_bits = _optimal_split(data, num_pattern) alpha_pattern = re.compile( b"("+ (b'[' + ALPHA_NUM + b']?') * minimum + b")") for is_num, chunk in num_bits: if is_num: yield QRData(chunk, mode=MODE_NUMBER, check_data=False) else: for is_alpha, sub_chunk in _optimal_split(chunk, alpha_pattern): if is_alpha: mode = MODE_ALPHA_NUM else: mode = MODE_8BIT_BYTE yield QRData(sub_chunk, mode=mode, check_data=False) def _optimal_split(data, pattern): while data: #match = re.search(pattern), data) match = pattern.search(data) if not match: break matched = match.group(0) start = data.rfind(matched) end = len(matched) + start #start, end = match.start(), match.end() if start: yield False, data[:start] yield True, data[start:end] data = data[end:] if data: yield False, data def to_bytestring(data): """ Convert data to a (utf-8 encoded) byte-string if it isn't a byte-string already. """ if not isinstance(data, bytes): data = str(data).encode('utf-8') return data def optimal_mode(data): """ Calculate the optimal mode for this chunk of data. """ if data.isdigit(): return MODE_NUMBER if all(b in ALPHA_NUM for b in data): return MODE_ALPHA_NUM return MODE_8BIT_BYTE class QRData: """ Data held in a QR compatible format. Doesn't currently handle KANJI. """ def __init__(self, data, mode=None, check_data=True): """ If ``mode`` isn't provided, the most compact QR data type possible is chosen. """ if check_data: data = to_bytestring(data) if mode is None: self.mode = optimal_mode(data) else: self.mode = mode if mode not in (MODE_NUMBER, MODE_ALPHA_NUM, MODE_8BIT_BYTE): raise TypeError("Invalid mode (%s)" % mode) # pragma: no cover if check_data and mode < optimal_mode(data): # pragma: no cover raise ValueError( "Provided data can not be represented in mode " "{0}".format(mode)) self.data = data def __len__(self): return len(self.data) def write(self, buffer): if self.mode == MODE_NUMBER: for i in range(0, len(self.data), 3): chars = self.data[i:i + 3] bit_length = NUMBER_LENGTH[len(chars)] buffer.put(int(chars), bit_length) elif self.mode == MODE_ALPHA_NUM: for i in range(0, len(self.data), 2): chars = self.data[i:i + 2] if len(chars) > 1: buffer.put( ALPHA_NUM.find(chars[0]) * 45 + ALPHA_NUM.find(chars[1]), 11) else: buffer.put(ALPHA_NUM.find(chars), 6) else: data = self.data for c in data: buffer.put(c, 8) def __repr__(self): return repr(self.data) class BitBuffer: def __init__(self): self.buffer = [] self.length = 0 def __repr__(self): return ".".join([str(n) for n in self.buffer]) def get(self, index): buf_index = int(index / 8) return ((self.buffer[buf_index] >> (7 - index % 8)) & 1) == 1 def put(self, num, length): for i in range(length): self.put_bit(((num >> (length - i - 1)) & 1) == 1) def __len__(self): return self.length def put_bit(self, bit): buf_index = self.length // 8 if len(self.buffer) <= buf_index: self.buffer.append(0) if bit: self.buffer[buf_index] |= (0x80 >> (self.length % 8)) self.length += 1 def create_bytes(buffer, rs_blocks): offset = 0 maxDcCount = 0 maxEcCount = 0 dcdata = [0] * len(rs_blocks) ecdata = [0] * len(rs_blocks) for r in range(len(rs_blocks)): dcCount = rs_blocks[r].data_count ecCount = rs_blocks[r].total_count - dcCount maxDcCount = max(maxDcCount, dcCount) maxEcCount = max(maxEcCount, ecCount) dcdata[r] = [0] * dcCount for i in range(len(dcdata[r])): dcdata[r][i] = 0xff & buffer.buffer[i + offset] offset += dcCount # Get error correction polynomial. if ecCount in rsPoly_LUT: rsPoly = Polynomial(rsPoly_LUT[ecCount], 0) else: rsPoly = Polynomial([1], 0) for i in range(ecCount): rsPoly = rsPoly * Polynomial([1, gexp(i)], 0) rawPoly = Polynomial(dcdata[r], len(rsPoly) - 1) modPoly = rawPoly % rsPoly ecdata[r] = [0] * (len(rsPoly) - 1) for i in range(len(ecdata[r])): modIndex = i + len(modPoly) - len(ecdata[r]) if (modIndex >= 0): ecdata[r][i] = modPoly[modIndex] else: ecdata[r][i] = 0 totalCodeCount = 0 for rs_block in rs_blocks: totalCodeCount += rs_block.total_count data = [None] * totalCodeCount index = 0 for i in range(maxDcCount): for r in range(len(rs_blocks)): if i < len(dcdata[r]): data[index] = dcdata[r][i] index += 1 for i in range(maxEcCount): for r in range(len(rs_blocks)): if i < len(ecdata[r]): data[index] = ecdata[r][i] index += 1 return data def create_data(version, error_correction, data_list): buffer = BitBuffer() for data in data_list: buffer.put(data.mode, 4) buffer.put(len(data), length_in_bits(data.mode, version)) data.write(buffer) # Calculate the maximum number of bits for the given version. rs_blocks = make_rs_blocks(version, error_correction) bit_limit = 0 for block in rs_blocks: bit_limit += block.data_count * 8 if len(buffer) > bit_limit: raise exceptions.DataOverflowError( "Code length overflow. Data size (%s) > size available (%s)" % (len(buffer), bit_limit)) # Terminate the bits (add up to four 0s). for i in range(min(bit_limit - len(buffer), 4)): buffer.put_bit(False) # Delimit the string into 8-bit words, padding with 0s if necessary. delimit = len(buffer) % 8 if delimit: for i in range(8 - delimit): buffer.put_bit(False) # Add special alternating padding bitstrings until buffer is full. bytes_to_fill = (bit_limit - len(buffer)) // 8 for i in range(bytes_to_fill): if i % 2 == 0: buffer.put(PAD0, 8) else: buffer.put(PAD1, 8) return create_bytes(buffer, rs_blocks) """ Main Formerly in main.py """ def make(data=None, **kwargs): qr = QRCode(**kwargs) qr.add_data(data) return qr.get_matrix() def _check_version(version): if version < 1 or version > 40: raise ValueError( "Invalid version (was %s, expected 1 to 40)" % version) def _check_box_size(size): if int(size) <= 0: raise ValueError( "Invalid box size (was %s, expected larger than 0)" % size) def _check_mask_pattern(mask_pattern): if mask_pattern is None: return if not isinstance(mask_pattern, int): raise TypeError( "Invalid mask pattern (was %s, expected int)" % type(mask_pattern)) if mask_pattern < 0 or mask_pattern > 7: raise ValueError( "Mask pattern should be in range(8) (got %s)" % mask_pattern) class QRCode: def __init__(self, version=None, error_correction=ERROR_CORRECT_M, box_size=10, border=4, mask_pattern=None): _check_box_size(box_size) self.version = version and int(version) self.error_correction = int(error_correction) self.box_size = int(box_size) # Spec says border should be at least four boxes wide, but allow for # any (e.g. for producing printable QR codes). self.border = int(border) _check_mask_pattern(mask_pattern) self.mask_pattern = mask_pattern self.clear() def clear(self): """ Reset the internal data. """ self.modules = None self.modules_count = 0 self.data_cache = None self.data_list = [] def add_data(self, data, optimize=20): """ Add data to this QR Code. :param optimize: Data will be split into multiple chunks to optimize the QR size by finding to more compressed modes of at least this length. Set to ``0`` to avoid optimizing at all. """ if isinstance(data, QRData): self.data_list.append(data) else: if optimize: self.data_list.extend( optimal_data_chunks(data, minimum=optimize)) else: self.data_list.append(QRData(data)) self.data_cache = None def make(self, fit=True): """ Compile the data into a QR Code array. :param fit: If ``True`` (or if a size has not been provided), find the best fit for the data to avoid data overflow errors. """ if fit or (self.version is None): self.best_fit(start=self.version) if self.mask_pattern is None: self.makeImpl(False, self.best_mask_pattern()) else: self.makeImpl(False, self.mask_pattern) def makeImpl(self, test, mask_pattern): _check_version(self.version) self.modules_count = self.version * 4 + 17 self.modules = [None] * self.modules_count for row in range(self.modules_count): self.modules[row] = [None] * self.modules_count for col in range(self.modules_count): self.modules[row][col] = None # (col + row) % 3 self.setup_position_probe_pattern(0, 0) self.setup_position_probe_pattern(self.modules_count - 7, 0) self.setup_position_probe_pattern(0, self.modules_count - 7) self.setup_position_adjust_pattern() self.setup_timing_pattern() self.setup_type_info(test, mask_pattern) if self.version >= 7: self.setup_type_number(test) if self.data_cache is None: self.data_cache = create_data( self.version, self.error_correction, self.data_list) self.map_data(self.data_cache, mask_pattern) def setup_position_probe_pattern(self, row, col): for r in range(-1, 8): if row + r <= -1 or self.modules_count <= row + r: continue for c in range(-1, 8): if col + c <= -1 or self.modules_count <= col + c: continue if (0 <= r and r <= 6 and (c == 0 or c == 6) or (0 <= c and c <= 6 and (r == 0 or r == 6)) or (2 <= r and r <= 4 and 2 <= c and c <= 4)): self.modules[row + r][col + c] = True else: self.modules[row + r][col + c] = False def best_fit(self, start=None): """ Find the minimum size required to fit in the data. """ if start is None: start = 1 _check_version(start) # Corresponds to the code in create_data, except we don't yet know # version, so optimistically assume start and check later mode_sizes = mode_sizes_for_version(start) buffer = BitBuffer() for data in self.data_list: buffer.put(data.mode, 4) buffer.put(len(data), mode_sizes[data.mode]) data.write(buffer) needed_bits = len(buffer) self.version = start end = len(BIT_LIMIT_TABLE[self.error_correction]) while (self.version < end and needed_bits > BIT_LIMIT_TABLE[self.error_correction][self.version]): self.version += 1 if self.version == 41: raise DataOverflowError() # Now check whether we need more bits for the mode sizes, recursing if # our guess was too low if mode_sizes is not mode_sizes_for_version(self.version): self.best_fit(start=self.version) return self.version def best_mask_pattern(self): """ Find the most efficient mask pattern. """ min_lost_point = 0 pattern = 0 for i in range(8): self.makeImpl(True, i) lost_point = make_lost_point(self.modules) if i == 0 or min_lost_point > lost_point: min_lost_point = lost_point pattern = i return pattern def setup_timing_pattern(self): for r in range(8, self.modules_count - 8): if self.modules[r][6] is not None: continue self.modules[r][6] = (r % 2 == 0) for c in range(8, self.modules_count - 8): if self.modules[6][c] is not None: continue self.modules[6][c] = (c % 2 == 0) def setup_position_adjust_pattern(self): pos = pattern_position(self.version) for i in range(len(pos)): for j in range(len(pos)): row = pos[i] col = pos[j] if self.modules[row][col] is not None: continue for r in range(-2, 3): for c in range(-2, 3): if (r == -2 or r == 2 or c == -2 or c == 2 or (r == 0 and c == 0)): self.modules[row + r][col + c] = True else: self.modules[row + r][col + c] = False def setup_type_number(self, test): bits = BCH_type_number(self.version) for i in range(18): mod = (not test and ((bits >> i) & 1) == 1) self.modules[i // 3][i % 3 + self.modules_count - 8 - 3] = mod for i in range(18): mod = (not test and ((bits >> i) & 1) == 1) self.modules[i % 3 + self.modules_count - 8 - 3][i // 3] = mod def setup_type_info(self, test, mask_pattern): data = (self.error_correction << 3) | mask_pattern bits = BCH_type_info(data) # vertical for i in range(15): mod = (not test and ((bits >> i) & 1) == 1) if i < 6: self.modules[i][8] = mod elif i < 8: self.modules[i + 1][8] = mod else: self.modules[self.modules_count - 15 + i][8] = mod # horizontal for i in range(15): mod = (not test and ((bits >> i) & 1) == 1) if i < 8: self.modules[8][self.modules_count - i - 1] = mod elif i < 9: self.modules[8][15 - i - 1 + 1] = mod else: self.modules[8][15 - i - 1] = mod # fixed module self.modules[self.modules_count - 8][8] = (not test) def map_data(self, data, mask_pattern): inc = -1 row = self.modules_count - 1 bitIndex = 7 byteIndex = 0 mask_func = make_mask_func(mask_pattern) data_len = len(data) for col in range(self.modules_count - 1, 0, -2): if col <= 6: col -= 1 col_range = (col, col-1) while True: for c in col_range: if self.modules[row][c] is None: dark = False if byteIndex < data_len: dark = (((data[byteIndex] >> bitIndex) & 1) == 1) if mask_func(row, c): dark = not dark self.modules[row][c] = dark bitIndex -= 1 if bitIndex == -1: byteIndex += 1 bitIndex = 7 row += inc if row < 0 or self.modules_count <= row: row -= inc inc = -inc break def get_matrix(self): """ Return the QR Code as a multidimensonal array, including the border. To return the array without a border, set ``self.border`` to 0 first. """ if self.data_cache is None: self.make() if not self.border: return self.modules width = len(self.modules) + self.border*2 code = [[False]*width] * self.border x_border = [False]*self.border for module in self.modules: code.append(x_border + module + x_border) code += [[False]*width] * self.border return code def render_matrix(self): out = "" for row in self.get_matrix(): out += "".join([{False: " ", True: "█"}[x] if x in (False, True) else "╳" for x in row]) out += "\n" return out